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SUMMARY 

The signed square root statistic R typically has cumulants on the form 

cump(Ä) = 62,p + n-2kp + 0(71'^). This paper shows how to compute 

kp without invoking the Bartlett identities. As an application, we show 

how the family of alternatives influences the coverage accuracy of R, and in 

particular that a bad choice of family can lead to arbitrary undercoverage 

for confidence intervals based on R. 
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1. INTRODUCTION 

The Bartlett identities are one of the most powerful tools available in likelihood theory. The 

general set of identities go back to Bartlett (1953 a, b), though earlier versions exist in the form 

of the so-called Wald identities. The first two identites were crucial in the early development of 

likelihood theory - Fisher, Neyman and Pearson, Cramer and Rao. Generalizations of the identites 

can be found on Skovgaard (1986), McCuUagh (1987), and Mykland (1994, 1995b), among others. 

Since their publication, these identities have been used for a variety of purposes, most notably 

the analysis of the higher order asymptotic behaviour of the likelihood ratio statistic and its square 

root R. This literature starts with Lawley (1956); contemporary research includes McCullagh 

(1984, 1987), McCullagh and Tibshirani (1990), DiCiccio and Romano (1989), DiCiccio, Hall and 

Romano (1991) and Andrews and Stafford (1993), to mention some. (There is also the parallel 

research done with saddlepoint type methods, as in Barndorff-Nielsen and Cox (1979, 1984) and 

Barndorff-Nielsen (1983, 1986, 1991), and the papers by Barndorff-Nielsen and Wood (1995). 

Jensen (1992, 1995, 1997) and Skovgaard (1990, 1996) discussed below). In addition to aiding the 

computation of coefficients in expansions, the identities can also be used to establish asymptotic 

normality and the existence of asymptotic expansions (as in the case of martingales in Mykland 

(1994, 1995b)). 

There is, however, also a dark side to these identities. Computations are often long and 

tedious, and the answers can be hard to verify. This can to some extend be remedied with sym- 

bolic computation, but writing such programs is also no simple task. We believe that this is the 

general experience of research workers in this area, and we certainly speak from painful personal 

experience, having spent a month in the Spring of 1995 to show that cum5(Ä) = 0(n~2) using 

Taylor expansions and Bartlett identities (to laugh and/or cry with the author, have a look at 

the (unpublished) technical report no. 411 of the Department of Statistics at the University of 

Chicago). 

As demonstrated in Mykland (1996), however, one can circumvent these identities to show 

that, in fact, cump(£) = 0(n~2). This is done by deriving cumulant behaviour from the large 

deviation results of Barndorff-Nielsen and Wood (1995), Jensen (1992, 1995, 1997) and Skovgaard 

(1990, 1996). 



The purpose of this paper is to show that one can take this further - that these large deviation 

techniques not only help for orders of convergence, they also help the computation of coefficients. 

Specifically, it will normally be the case that 

cvmp(R) = 62tP + n~hp + Oin-*?-) (1.1) 

(see Wallace (1958), Bhattacharya and Ghosh (1978), Hall (1992), and Mykland (1996)), and we 

shall show how to find kp. Similar methods seem capable of yielding higher order terms in the 

expansions of the form (1.1). 

In the following, we first discuss how Edgeworth and large deviation expansions hang to- 

gether, and we state a result which gives the form of the generating function of the fcp's. k3 and 

k4 are given explicitly (fcj and k2 are previously known). A more rigorous development involving 

curved exponential families is given in Section 4. Meanwhile, in Section 3, we show how these 

results can be used to analyze the effect of the alternative on the null distribution of R, and how 

this affects the difference between nominal and actual coverage of confidence intervals. 

It should be emphasized that we are not completely doing without the Bartlett identities. The 

coefficients come up again in the formulae we derive, see, e.g., (2.9), and we invoke the identities 

themselves in Section 3. The Bartlett identities remain a powerful presence in likelihood theory, 

even if one can sometimes do without them. 

2. THE MAIN FORMULA 

If an asymptotically normal statistic has density fn and cumulant generating function Kn, 

the saddlepoint approximation has the form 

fn(nh)  = L__exp(iTn(fn)-fn<(fn))(l + 0(l)), (2.1) 
{2vK>>{fn))2 

where K'n(fn) = n^h. This goes back to Daniels (1952), see also Theorem 1 of Chaganty and 

Sethuraman (1985) and Theorem 1 of Mykland (1996). If we are dealing with the signed square 

root statistic Rn, whose cumulants are of the form (1.1), it is easy to Taylor expand (2.1) to get 



the following. First of all, 

ah) = Um^oo^^ (2.2) 
4>{nih) 

exists - d> being the standard normal density. Also, 

i{h)  =  exP{M+^2/*2 + ifc3/i3 + ••'}• (2-3) 

Following the development in Section 4, we get the following formula for £. 

THEOREM 1. Let 

£{ß) = Km(ln(ß)-tn(ßo))/n (2.4) 

and 

J(ß) = -]im£n(ß)/n (2.5) 

where the limits are in probability under Pß. Set 

h(ß) = V2    sign(/J - ß0)I(ß)1/2. (2-6) 

Then f (under Pp0) is given by 

Z:h^J^. (2.7) 

■ 

In Appendix 1 we show that 

I(ß)^-y,^(ß-ßo7Y^b(qu...,qk)cum(^\...,^\...J^....,^%...h (2-8) 
n *—' p. *~^ s        s/       ^        v        v 

P^2 gi  times ?* times 

where the second sum is over all q\, q2,... so that qi + 2q2 + ... + kqk + . ■. = q, and where the 6s 

are the coefficients in the Bartlett identities, i.e., 

b{qu-qk)=TKi$^. (2-9) 

(see, e.g., p. 159 of Barndorff-Nielsen and Cox (1989)). Similarly, 

^(^---E^^-^E^i^.M^cum^1),...,^1),...,^....,^),...), (2.10) 
P— gi  times <jjt times 



where 

1     p+   /r\ 
b(ql,...,qv) = b(q1,...,qv)-^r1}2[2}qr- (2-U) 

I  2   / r=2  V  ' 

Finding the expression for the function (2.7), therefore, is purely a matter of inverting the function 

h -»• ß, and then plugging it into J(/?)1/2 and also differentiating it. This is easily done by symbolic 

manipulation software; we have used Maple (Cher et al. 1991) to get the expressions (2.12) and 

(2.13) below, k-i and k2 are all well-documented in the literature, see, e.g., McCullagh (1987), p. 

214. Here, we therefore give 

and 

u        ~9/2 17 ,   7 
-C111C11C22 + — C111C11C112 + - ciiicucini 

125   Q 9 1   2 "2 
~ J^ cm + cnc23 - 2 cnc"3 - 2 CllCl112 

3    2 
~1Ö CnCllin 

-6 
"-4  — CH 

45   2 23 o 9   2 
— C^Ci^Cuu - — CiiiCnC23 -  g  CnC22Cllll 

(2.12) 

45   2 1465   4        9   2   2 
- -J- CnC22Cll2 + ~jyj" Cm - - CnC22 

4o       9       9 OÜ       2       2 r*      3 n      3 + y cnc112 + — cllCllll - 6 cnc24 - 8 cucn4 

11 51 
- y cllc33 - 12 cliCln3 - — CnCH22 

21 13 3 _ Y cllc11112 - y Ci!C222 - ^ cfjCuim 

113   2 455   2 341   2 
+ yj" cmCiiC22 - ^y cmcncii2 - — cmcucmi 

+ y cnicfiCns + 3 cmci1ci22 + 16 + cmc^cn^ 

+3 CmC^Ciiiii - 8 C?!Ci23] , (2.13) 

where c9l...,r ~ cum(£(?1\ .. . ,^9r))/n, and where we have adopted the convention from McCullagh 

(1987) of using a parametrization where c\q — 0 for q > 2. 



Note that in i.i.d. problems, the form of 7 and J are particularly straightforward: 

I(ß) = E(h(ß) - li(ßo))exp(ti(ß) ~ Wo)) (2-14) 

and 

J(ß) = -Etx{ß) exp (Zx{ß) - l^ßo)) ■ (2-15) 

Finally, observe that the above viewpoint gives a new formula for an R* statistic, 

Ä* = Ä + ±log|. (2.16) 

Various forms of U have been investigated, see, in particular Jensen (1992, 1997) and Skovgaard 

(1996). In view of the development in Jensen's papers, it is clear that (in curved exponential and 

analytic families), one can take 

U = RI&Rly/n). (2.17) 

This has the right unconditional large deviation coverage up to 0(n-1), though, obviously, the 

conditional convergence properties are probably lost. This R* is a function of R, and it can be 

seen as a large deviation version of Cornish-Fisher inversion. 

3. THE ACCURACY OF CONFIDENCE INTERVALS 

One of the least studied phenomena of likelihood theory is the impact of the alternative 

on the coverage accuracy of confidence intervals. At first, this may seem like a contradiction in 

terms - coverage only concerns the behaviour of a statistic under the null hypothesis. The family 

of alternatives, however, sets up the likelihood function from which R is derived. Hence, different 

alternatives lead to different Äs, and hence to different behaviour under the null distribution. 

From a traditional likelihood perspective, this may seem like a strange consideration, as the 

likelihood is determined by the actual family of alternatives. Recent years, however, have seen the 

increasing use of likelihoods that are designed to work under a multiplicity of null distributions, 

and such likelihoods need a pragmatic and sometimes deliberately wrong specification of the family 

of alternatives. Examples of this include the partial (Cox (1972, 1975), Wong (1986)), projective 

(McLeish and Small (1992) and dual (Mykland (1995a), Kong and Cox (1996)) likelihoods. 



Since there are, therefore, several likelihoods that can go with the same alternative, it raises 

the question of how to compare them. The debate has been particularly acue in connection with 

empirical/dual likelihood, see Corcoran, Davison and Spady (1995) and Section 6 of Mykland 

(1996). 

The debate has mainly been one the accuracy of possible procedures. This is because the 

dual and true likelihoods have the same power to first order in contiguous neighborhoods (Mykland 

(1995a), Section 5), and hence, typically, also to second order (Bickel, Chibisov, and van Zwet 

(1981)). And also because to third order, though the two do not have the same power, sometimes 

one does better, sometimes the other (Lazar and Mykland (1997)). 

The formulae in the previous section permit us to characterize the impact of the alternative 

on accuracy. Consider the following setup: we are looking at log likelihoods £ having the same 

score £, but where we can otherwise vary £, I, and so on, as we see fit. t being a log likelihood 

implies that var(£) + E(^) = 0, so first and second order efficiency only depends on I. The only 

restriction we impose is that cov(^,^) = cov(l,£) = • • • = 0 (as in McCullagh (1987), Chapter 7), 

since this can be done by a reparametrization which does not alter the statistic R. 

The expansion for the density fn of the signed square root R is 

/n(r) = <f>(r) |l + (n-hi + n^)/^) + ^ n^W) + 1 n^fah^r) + 0((r4 + l)n"2)| , 

(3.1) 

where hq(r) is the <?'th Hermite polynomial. (3.1) doubles as an Edgeworth and a large deviation 

expansion (cf. Chaganty and Sethuraman (1985)). In the same notation as (2.12)-(2.13), we have 

that 

fa  =   -cn' cm/3 ! (3.2) 

-en2 
'11              1 
^C23 + -C1112 + ^c113 - cn cm 

'17                   9 
.24Cl12 + 16C22. 

(3.3) 

k2  =  cn
2 '11            1 

^c22 - 2CH2 - 4Cim (3-4) 

and 

where kx is the corresponding quantity for an exponential family with the same score. k\ and A;2 

comes from p. 214 of McCullagh (1987); k[ is derived in Appendix 2. Note, incidentally, that the 



kq can depend on n to the extent that the c's do.   One could also, obviously, expand the c's in 

orders of n, but that would only deepen the messiness of expressions. 

It is clear from this that the convergence error at the n" level is fixed by the score £, the 
"3 * 

n_1 behaviour depends on the score and £, the ra" behaviour on £, £ and £, and so on. In itself, 

not particularly surprising. 

What is surprising, however, is that there is a radical difference between what can go wrong 

at the n_1 level and the n~2 level. We shall argue below that a bad choice of £ can result in 

arbitrary overcoverage, but limited under cover age. On the other hand, a bad choice of £ can also 

lead to unlimited under cover age. The latter is, obviously, particularly dangerous. 

The thing is, that k2 is quadratic in £, with positive sign in front of the square term. Set 

£\j — [£,£] + a£ — 2var(i), where [1,1] is the observed (optional) quadratic variation of £, and where 

a = -cov(i, [£,£])/V&T(£). Suppose that £ — £\j + m + R, where m is a martingale orthogonal to 

£, and R is 0P(1) and asymptotically independent of £, [£,£] and m. This will be the case in most 

regular situations; the independent case is obvious; for Markov chains, see p. 448 of Jacod and 

Shiryaev (1987); for mixing sums, see Ch. 5 of Hall and Heyde (1980), or also Jacod and Shiryaev 

(1987). By the Bartlett identities for martingales (Mykland (1994), 

cov(£if,m) = cma.(£,£,m), (3-5) 

and hence 

&2 = k2,if + -c^-va^m) + o(l), (3.6) 

where k2,ij is the value of k2 when £\j is taken as the second derivative of £. Thus, 

h > kUf + o(l), (3.7) 

establishing our claim about limited undercoverage at this level. 

The coefficients in the n~3/2 term, however, tell a different story. In both &3 and k[, £ enters 

linearly. If we focus on £3, let £ and £ be given, and consider a zero mean martingale m, orthogonal 

to £, so that 

cov(^, m) - -cum(^,£, m) = i/n + o(n), (3.8) 



where v ^ 0. Replace the original t by "la = I + am. The new la satisfies the third Bartlett 

identity (and is hence a valid third derivative of I), and also cov(£a,£) = 0. In this setup, 

k3,a = k3 + ac^/2^ + o(l), (3.9) 

which can take on any value. In other words, both under- and overcoverage is potentially un- 

bounded at this level. 

4. CURVED EXPONENTIAL FAMILIES 

For a more rigorous development, consider a curved exponential family 

Uß) = Ußo) + (ß~ Mtißo) + \{ß ~ ßlftißo) + ■■■ (4-1) 

of order p (i.e., terms of order p+l and higher are nonrandom). We shall consider R for testing 

H0 : ß = ßo- Suppose that there is a valid saddlepoint approximation to the density of the vector 

(i„(/3),.. .Un){ß))- One can then proceed as follows. 

Begin by fixing ßi ^ ßo- Then reparametrize the family as in Section 7.2.3 (p. 204-207) of 

McCullagh (1987) to make covßl{i{ßi),t(qXßi)) = 0 for 2 < q < p. It is clear from McCullagh 

that this is accomplished by using parameter <?, given by <t>\ = ß, and 

4>{ß) - <k = ß - ßi + ö(0 - ßi)  7J71TT\— + "' 

= EßÄß^m-ijßx)) (4 2) 

VB.VßMß,)) 

Hence 

<ßo~<f>i = 4>(ßo) - <t>i 

WßEßo fßE0a9{l{ß)-t{ßo))\ß=ßl 

EßAß 

(4.3) 



as n -* oo under Pß. Here g(x) = (x - l)ex, which can be replaced by g{x) = xex since 

Eßo exp(£(ßi) - £(ßo)) = 1. In the new parametrization, the null hypothesis is 4> = 4>Q. 

Now embed £n(ß) - £n(ßo) in a fuU exponential family. In the notation of Jensen (1997) 

(which we shall be using in the following), Tq = £^/q\n. Note that we do not require the T9's to 

be means, only that the saddlepoint approximation hold. 

Our larger family is then (in the new parametrization) 

Ufa) + OiU<f>o) + ■■■ + Op-fi\fo)- 

A reparametrization of the 0's is given by 

and 

9t = <j>be   for   £ > 2 (4.4) 

(in Jensen's notation, $ is ß0 and be is ße). A corresponding sequence of null hypotheses is 

and 

H%] :  be = 1    for   £ > 2. (4.5) 

Hence, HQ    is our original null hypothesis. 

Let the rZ>'s be chosen as in Section 3 of Jensen (1997). In view of Section 2 of the same 

paper, the joint density of (R1, RL,2, ■■■,RL,P) is, in a large deviation region, 

^^(-rl-\pl){^Oin-i)}. (4,) 

Note that Ri - R. By using Skorokhod embedding, it therefore follows that, under P^, 

fßo(R\RL,2,...,RL,p) = |i|1 + 0p(n-1)} . (4.7) 
<f>(R) Ui 
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Clearly, Rx/yß = MÄ)(1 + O^n"1/2)), where A is given in (2.6). Hence, if we can show that 

üi/yfi = (<f>i - <f>o)J(ßi)1/2 {l + Op{n-"2)} , (4.8) 

it follows from (4.3), and by averaging over (RL,2, ■■•■>RL,P), that 

m      im    {    p     f 

= J1/2(/3i)fw{l + 0P(n-1/2)} (4-9) 

under Pßl. Again by Skorokhod embedding, we get 

THEOREM 2.  Under the above assumptions, 

f0o,n(r) = <t>(r)jV2(ß)%(h) {l + 0(«-1/2)} (4-10) 

in a large deviation region \h\ < c, with h = ry/n. ■ 

Theorem 1 is an immediate corollary. 

It remains to show (4.8). In Jensen's (1997) notation, 

(4.11) 

where 9t - (ßf^Y is the term in the t\\v column. Note that (ß[f is ß[~l raised to power k, which 

is the only instance of power notation in (4.11). 

Since corr(Ti,T*) ~ 0, (note that this is where the reparametrization above is used), 0\ - 

0[-lY is Op(n"1/2) but not op(l). On the other hand, for t>2,ß[- /3f_1 = Op{n~l). Hence, for 

£>2, 

0i-ee-1 = (0,9e
2-ee

2-\...J
ee-(ß{~1Y^,...,0) + Op(n-1). (4.12) 

Hence the determinants in equation (7) in Jensen (1997) can be evaluated by multiplying the 

diagonal, and so (5.8) follows. Note that in the above argument, if T( is zero, one just deletes line 

and column £ and makes the appropriate modification to the next column. This does not affect 

the result. 



11 

ACKNOWLEDGEMENTS 

The author would like to thank Ole Barndorff-Nielsen, Jens Jensen. Peter McCullagh, Nicole 

Lazar, lb Skovgaard, Trevor Sweeting and Andy Wood for extremely useful discussions, and Mitzi 

Nakatsuka for typing part of the paper. 

Obviously, if g(x) = xex, 

APPENDIX 1 

= -Eßog(£(ß)-£(ßo)), (ALI) 
n 

so that the p'th derivative is 

?">(/?) ~ -Eßo       T       ^(0)c(ft)..,aA.)'1-^)(A.)" (Ai.2) 
T7 •"   * 

?l+2g2H \-vqv=p 

which yields (2.5) since g^(0) = v and since moments can be replaced by cumulants in the above. 

The latter can either be seen by direct computation, or by observing that the right hand side of 

(Al.l)is 0(1). 

To find «7, note that 

°P r=0 ^   ' qi+2q2+~+vqv=p-r 

which gives (2.7) for the same reasons as used above, and because 

c(qi,...,qv) = £ (   Jc(gi,...,gr+i,gr+2 - l,9r+3,-••,?«), (A1-4) 

which gives (2.12) by direct computation, using (2.6). 
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APPENDIX 2 

This is the calculation of (3.3). The expectation is calculated by the Taylor expansion 

method as we need an additional term in E(Rn) to that provided by Theorem 1. In principle, the 

technology used to derive Theorem 1 can also be used to get higher order terms (like k[), but since 

we are just looking for an expectation, this is a little like shooting sparrows with cannons. If one 

were looking for higher order terms in higher oder cumulants, an extension of Theorem 1 would 

greatly ease one's life. 

The derivation is here done in the multivariate setting. We shall use the notation in McCul- 

lagh (1987). In the univariate case R - WxVv^. By adding the Op(n
-3/2) term to the stochastic 

expansion (7.15) on p. 214 in McCullagh (1987), one gets that 

WT = W^+n-^2ZrsZ
s/2 

+ n^iZrrtZ'Ztßl + (vratu + vr,s^u)ZsZtZulA\ 

+ 3ZrsZ
stZt/8 + bZrsZtZuv

stu/12} 

+ n-*l2{{vrstuv + vr,.,t,UtV)Z'ZtZuZv/b\ 

+ U(vrstu + ur,s,t,uy'vuvwxZ
tZuZwZx/U4 + U} 

+ Op(n-2) (A2.1) 

where WT is the corresponding quantity for an exponential family alternative with the same score 

as the original alternative, and where U is a generic term referring to a linear combination of 

products of 4 Z's, at least one and at most three of which is a higher order derivative. It follows 

that 

EWr = EWT 

+ 3//s'V''Vrs,tjl4/8 + 5vrS}t,uvstu/12 

+ 0(n-5/2) (A2.2) 

Simplifying to univariate notation gives (3.3). 



13 

REFERENCES 

Andrews, D. F., and Stafford, J. E. (1993).   Tools for the symbolic computation of asymptotic 

expansions. J. Roy. Statist. Soc. 55 613- 627. 

Bartlett, M.S., 1953a, Approximate confidence intervals, Biometrika 40 12-19. 

Bartlett, M.S., 1953b, Approximate confidence intervals. II. More than one unknown parameter, 

Biometrika 40 306-317. 

Barndorff-Nielsen, 0. E. (1983).   On a formula for the distribution of the maximum likelihood 

estimator. Biometrika 70 343-365. 

Barndorff-Nielsen, 0. E. (1986). Inference on full or partial parameters based on the standardized 

signed log likelihood ratio. Biometrika 73 307-322. 

Barndorff-Nielsen, 0. E. (1991). Modified signed log likelihood ratio. Biometrika 78, 557-63. 

Barndorff-Nielsen, 0. E., and Cox, D. R. (1979). Edgeworth and saddle-point approximations with 

statistical applications (with discussion). J. Roy. Statist. Soc. B 41 279-312. 

Barndorff-Nielsen, O. E., and Cox, D. R. (1984).   Bartlett adjustments to the likelihood ratio 

statistic and the distribution of the maximum likelihood estimator. J. Roy. Statist. Soc. B 

46 483-495. 

Barndorff-Nielsen, 0. E., and Cox, D. R. (1989).   Asymptotic Techniques for use in Statistics 

(Chapman and Hall, London). 

Barndorff-Nielsen, 0. E., and Wood, A. T. A. (1995). On large deviations and choice of ancillary 

for p* and the modified directed likelihood. Preprint. 

Bhattacharya. R.N., and Ghosh, J.K. (1978). On the validity of the formal Edgeworth expansion. 

Ann.   Statist. 6 434-451. 

Bickel, P.J., Chibisov, D.M. and van Zwet, W.R. (1981). On efficiency of first and second order. 

Int. St. Rvw. 49, 169-175. 

Chaganty, N. R., and Sethuraman, J. (1985). Large deviation local limit theorems for arbitrary 

sequences of random variables. Ann. Probab. 13 97-114. 



14 

Corcoran, S.A., Davison. A.C. and Spady, R.H. (1995).  Reliable inference from empirical likeli- 

hoods'. Preprint. 

Cox, D.R. (1972). Regression models and life tables (with discussion), J. Roy. Statist. Soc. B 34 

187-220. 

Cox, D.R. (1975). Partial likelihood, Biometrika 62 269-276. 

Daniels, H. E. (1952). Saddlepoint approximations in statistics. Ann. Math. Statist. 25 631-650. 

DiCiccio, T.J., Hall, P.. and Romano, J.P. (1991).   Empirical likelihood is Bartlett-correctable, 

Ann. Statist. 19 1053-1061. 

DiCiccio, T.J., and Romano, J.P. (1989). On adjustments based on the signed root of the empirical 

likelihood ratio statistic, Biometrika 76 447-456. 

Hall, P. (1992). The Bootstrap and Edgeworth Expansion (Springer-Verlag, New York). 

Jacod, J., and Shiryaev, A.N. (1987). Limit Theorems for Stochastic Processes (Springer-Verlag). 

Jensen, J. L. (1992).   The modified signed likelihood statistic and saddlepoint approximations. 

Biometrika 79 693-703 

Jensen, J. L. (1995). Saddlepoint Approximations in Statistics (Oxford University Press, Oxford). 

Jensen, J. L. (1997). A simple derivation of a natural large deviation modified likelihood statistic. 

To appear in Scand. J. Statist. 

Kong, A. and Cox, N.J. (1996). From efficient nonparametric tests for linkage analysis to semipara- 

metric models and lodscores. Technical report no. 435, Department of Statistics, University 

of Chicago. 

Lawley, D. N. (1956).   A general method for approximating the distribution of likelihood ratio 

criteria, Biometrika 43 295-303. 

Lazar, N., and Mykland, P.A. (1997). An evaluation of the power and conditionality properties of 

empirical likelihood (in preparation). 

McCullagh, P. (1984). Local sufficiency. Biometrika 71 233-244. 

McCullagh, P. (1987). Tensor Methods in Statistics (Chapman and Hall, London). 



15 

McCullagh, P., and Tibshirani, R. (1990). A simple method for the adjustment of profile likeli- 

hoods. J. Roy. Statist. Soc. B 52 325-344. 

McLeish, D.L., and Small, CG. (1992). A projected likelihood function for semiparametric models, 

Biometrika 79 93-102. 

Mykland, P.A. (1994). Bartlett type identities for martingales. Ann. Statist. 22 21-38. 

Mykland, P.A. (1995a). Dual likelihood. Ann. Statist. 23 396-421. 

Mykland, P.A. (1995b). Embedding and asymptotic expansions for martingales, Probab. Theory 

Rel. Fields 103 475-492. 

Mykland, P.A. (1996).   The accuracy of likelihood, Technical report no.   420, Department of 

Statistics, University of Chicago. 

Skovgaard, lb (1986).   A note on the differentiation of cumulants of log likelihood derivatives. 

Internat. Statist. Rev. 54 29-32. 

Skovgaard, lb (1990). On the density of minimum contrast estimators. Ann. Statist. 18 779-789. 

Skovgaard, lb (1996). A general large deviation approximation to one-parameter tests. Bernoulli 

2 145-165. 

Wallace, D,L. (1958).   Asymptotic approximations to distributions.   Ann. Math.     Statist.   29 

635-654. 

Wong, W.H., 1986, Theory of partial likelihood, Ann. Statist. 14 88-123. 


